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An efficient synthesis of the C1–C14 subunit of (�)-lasonolide A
via a target oriented b-C-glycoside formation sequence

Kailas B. Sawant, Fei Ding and Michael P. Jennings*

Department of Chemistry, 500 Campus Drive, The University of Alabama, Tuscaloosa, AL 35487-0336, USA

Received 14 November 2005; revised 22 November 2005; accepted 29 November 2005
Available online 19 December 2005
Abstract—An efficient synthesis of the C1–C14 subunit resident in (�)-lasonolide A is reported herein. The key reaction features that
were utilized include a Molander–Reformatsky SmI2 mediated intramolecular aldol reaction followed by a diastereoselective target
oriented b-C-glycoside formation sequence. Lastly, a chemo- and diastereoselective cross-metathesis of a terminal olefin in the pres-
ence of a trisubstituted alkene with acrolein and subsequent olefination of the aldehyde moiety allowed for the completion of the
(E,E)-diene side chain.
� 2005 Published by Elsevier Ltd.
Over the past two decades, the construction of a- and b-
C-glycosides has become increasingly important in the
synthesis of biologically active natural products. Along
this line, there has been substantial growth in new syn-
thetic methodologies within this area. Such building
blocks have been synthesized by using several technolo-
gies including the hetero-atom Diels–Alder reaction,1

Petasis–Ferrier rearrangement,2 intermolecular silyl-
modified Sakurai and Prins cyclizations,3 exo-Pd-medi-
ated allylic etherification,4 radical cyclization,5 and
intramolecular Michael additions with oxygen nucleo-
philes.6 As a complementary procedure to these techno-
logies, our research program is interested in expanding
and concomitantly defining a broader scope of Kishi�s
strategy for the synthesis of b-C-glycosides.7

First isolated from Forcepia sp. in 1994 by McConnell,
(�)-lasonolide A (1) represents a potent anti-tumor
agent which exhibits significant cytotoxic activity (ng/
ml) against P388 murine leukemia, A-549 human lung
carcinoma cell lines, and inhibits cell adhesion in the
EL-4.IL-2 cell line.8 In addition to the impressive levels
of biological activity, the highly unique structure of 1
makes it an attractive target for total synthesis and an
ideal target for testing synthetic methodologies of b-C-
glycosides. Thus, a variety of synthetic approaches to
1 have been reported9 with only two total syntheses
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reported to date.5,10 Lee and co-workers were the first
to disclose the asymmetric total synthesis of 1, in addi-
tion to a structural revision, thus determining both the
relative and absolute configuration of natural (�)-laso-
nolide.5 Key steps in their synthesis included two radical
cyclizations to form both b-C-glycoside units followed
by a Yamaguchi macrocyclization. Subsequently, Kang
and co-workers reported the second total synthesis of 1,
by utilizing a clever desymmetrization followed by an
asymmetric allylation en route to the completion of
the upper b-C-glycoside subunit and then ultimately 1.10

As shown in Scheme 1, our initial approach to the syn-
thesis of 1 was based on a stereoselective reduction of a
cyclic oxocarbenium cation mediated by the treatment
of an appropriate hemi-ketal with Lewis acid. In turn,
the hemi-ketal was envisaged to be derived from a nucleo-
philic addition of the allyl Grignard reagent to the cor-
responding lactone 3. We envisioned a SmI2 Molander–
Reformatsky11 lactonization sequence for the synthesis
of 3, which would be derived ultimately from the a,b-
unsaturated aldehyde 4.

The synthesis of 2 was initiated with the previously
reported a,b-acetylenic ester 5,12 as shown in Scheme
2. Thus, carbocupration of 5 utilizing the dimethyl
Gilman reagent (Me2Cu

� Li+) under Corey�s condi-
tions13 allowed for the stereoselective formation of the
trisubstituted a,b-unsaturated ester 6 in 91% yield. Sub-
sequent reduction of the ester moiety with DIBAL fur-
nished the primary alcohol, which in turn was oxidized
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Scheme 3. Synthesis of the bromoacetyl-aldehyde 13: Reagents and
conditions: (a) bromoacetyl bromide (2.0 equiv), Et3N (2.5 equiv),
DMAP (0.03 equiv), CH2Cl2, 0 �C, 2 h, 85%; (b) PPTS (0.3 equiv), EtOH,
rt, 72 h, 88%; (c) Dess–Martin periodinane (1.5 equiv), CH2Cl2, 0 �C, 3 h,
55%. PPTS = pyridinium p-toluenesulfonate; Dess–Martin period-
inane = 1,1,1-tris(acetyloxy)-1,1-dihydro-1,2-benziodoxo-3-(1H)-one.
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Scheme 2. Synthesis of intermediate 10: Reagents and conditions: (a)
CuI (1.5 equiv), THF, 0 �C, MeLi (3 equiv), 10 min, then �78 �C, then
5, 4 h, 91%; (b) DIBAL (2.2 equiv), Et2O, �78 to 0 �C, 3 h, 92%; (c)
TPAP (5 mol %), NMO (2.1 equiv), CH2Cl2, 0 �C, 2 h, 96%; (d) 7

(1.15 equiv), CH2Cl2, �55 �C, n-BuBOTf (1.19 equiv), 30 min, Et3N
(1.3 equiv), 20 min, 0 �C, then 4, �70 �C, 4 h, 90%; (e) NaBH4

(4 equiv), THF/H2O: 1/1, rt, 3.5 h, 88%; (f) TBSCl (1.15 equiv), Et3N
(3.1 equiv), DMAP (0.30 equiv), CH2Cl2, 12 h, 80%. DIBAL = di-
isobutyl-aluminum hydride; TPAP = tetrapropylammonium perruthe-
nate; NMO = 4-methyl-morpholine-N-oxide; TBSCl = tert-butyl-
dimethylsilylchloride; DMAP = 4-dimethylaminopyridine.
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Scheme 1. Retrosynthesis of (�)-lasonolide A.
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to aldehyde 4 by means of Ley�s TPAP reagent14 with a
combined yield of 90% over the two steps from ester 6.
With 4 in hand, our attention was turned to the initial
introduction of the syn-stereochemistry as required for
the completion of 2. This aspect was uneventfully
accomplished by the treatment of aldehyde 4 with the
benzyl substituted oxazolidinone 7. Accordingly, enoli-
zation of 7 was achieved under the Evans� protocol15

utilizing the standard reagents such as n-Bu2BOTf
and Et3N followed by treatment of the pre-formed
(Z)-boron enolate with aldehyde 4 which provided the
syn-aldol adduct 8 with a 90% yield and P97:3 dr as
determined by 1H NMR. With the requisite stereochem-
istry from the aldol product 8 in hand, removal of the
Evans� auxiliary was accomplished via treatment of 8
with NaBH4 in a 1/1 THF/H2O solvent mixture as
reported by Prashad16 to provide the diol 9 in 88% yield.
Much to our surprise treatment of 9 with TBSCl and
imidazole did not lead to selective silylation of the pri-
mary hydroxyl moiety. Finally, discrimination between
the primary and secondary alcohol was realized and
the silylation was accomplished in 80% yield upon treat-
ment of 9 with TBSCl, Et3N, and DMAP in CH2Cl2 to
furnish intermediate 10.

With the two hydroxyl moieties of 9 differentiated via the
selective silylation of the primary alcohol, we turned our
attention to the introduction of the bromo-acetate func-
tionality in order to examine the feasibility of the pro-
posed stereoselective intramolecular Reformatsky
lactone formation reaction sequence. With this in mind,
esterification of the free secondary hydroxyl moiety resi-
dent in 10 was accomplished with bromoacetyl bromide,
Et3N, and DMAP in 85% yield as shown in Scheme 3.
Subsequent selective TBS desilylation of 11 was achieved
by utilizing PPTS in EtOH to afford the free primary hy-
droxyl intermediate 12. Unfortunately oxidation of the
primary alcohol resident in 12 to the labile aldehyde 13
was problematic. Treatment of 12with a variety of oxida-
tion protocols such as TEMPO–BAIB, TPAP–NMO,
and Swern provided the a,b-unsaturated aldehyde via
b-elimination of the bromoacetyl group.17 Much to our
delight, oxidation of 12 readily afforded aldehyde 13
via the Dess–Martin reagent in an acceptable 55% yield.

With 13 in hand, the stage was set for the intramolecular
SmI2 mediated Reformatsky sequence. Molander re-
ported that the treatment of a bromoacetyl moiety with
SmI2 readily allowed for the synthesis of a Sm(III) eno-
late which subsequently underwent an intramolecular
aldol reaction with a pendent aldehyde via a double
six-membered transition state to furnish selectively a b-
hydroxy lactone with exceptional diastereoselectivity.11
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Scheme 4. Synthesis of lactone 3: Reagents and conditions: (a) SmI2
(2.0 equiv), THF, 0 �C, 2 h, 51%.
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Scheme 5. Completion of subunit 2. Reagents and conditions: (a) (i)
allylMgBr (2.5 equiv), THF, �78 �C, 1 h, (ii) TFA (6 equiv), Et3SiH
(6 equiv), CH2Cl2, �78 �C, 2 h, 44%; (b) acrolein (2.0 equiv), 18

(5 mol %), CH2Cl2, 50 �C, 16 h, 72%; (c) 20 (2 equiv), THF, 0 �C to rt,
4 h, 82%. TFA = trifluoroacetic acid.
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As anticipated, treatment of 13 with SmI2 provided the
initial Sm(III) enolate intermediate which quickly under-
went cyclization to provide lactone 3 as a single diaste-
reomer as observed by 1H NMR in 51% yield via the
proposed transition state as shown in Scheme 4.18

With the key hydroxy-lactone 3 in hand, our attention
was initially focused on the allyl b-C-glycoside forma-
tion followed by final elaboration of the terminal alkene
functional group into the final targeted structure 2.
Thus, treatment of lactone 3 with excess allyl magne-
sium bromide readily afforded the lactol intermediate
15 as a mixture of two diastereomers as observed by
1H NMR. Immediate addition of TFA to lactol 15 seem-
ingly provided the oxocarbenium intermediate 16, which
was subsequently reduced with Et3SiH. As observed in
our previous synthesis of (�)-dactylolide,7c the free sec-
ondary hydroxyl group was concomitantly protected as
a TES ether under the reductive conditions for the trans-
formation of 16 to 17. The overall yield of the five trans-
formations (nucleophilic addition, oxocarbenium
formation, Et3SiH reduction of the oxocarbenium cat-
ion, active silylating reagent formation, and silylation
of the free hydroxyl moiety) was a very respectable
44%. The remaining material balance was the untriethyl-
silylated compound of pyran 17. Chemo- and diastereo-
selective cross-metathesis of the terminal alkene with
acrolein utilizing the Grubbs� second-generation carbene
catalyst19 18 was accomplished with a 15:1 ratio in favor
of the predicted and desired (E)-a,b-unsaturated alde-
hyde 19 in 72% yield. The geometry of the two olefins
and the b-C-glycoside moiety were deduced via the
NOE enhancements as shown in Figure 1. In addition
to the NOE experiment, the observed coupling constants
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Figure 1. Key NOE enhancements of intermediate 19.
(14 Hz) of the unsaturated aldehyde protons provided
further geometrical proof of compound 19. Final elabo-
ration of the aldehyde moiety to the (E,E)-a,b-unsatu-
rated ester was accomplished upon treatment of 19
with the stabilized Wittig reagent 20 to ultimately fur-
nish 2 in an 82% yield (Scheme 5).20

In conclusion, we have completed the synthesis of the
C1–C14 subunit resident in (�)-lasonolide A. The key
reaction features that were utilized included a Molan-
der–Reformatsky SmI2 mediated intramolecular aldol
reaction followed by a diastereoselective target oriented
b-C-glycoside formation sequence. Lastly, a chemo- and
diastereoselective cross-metathesis of a terminal olefin in
the presence of a trisubstituted alkene with acrolein and
subsequent olefination of the aldehyde moiety allowed
for the completion of the (E,E)-diene side chain of 1.
Studies toward the total synthesis of 1 are ongoing
and will be reported in due course.
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